FORTECO

ПНЕВМОАВТОМАТ

APS500

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

Настоящее Руководство содержит основные технические характеристики пневмоавтомата APS500, сведения о его принципе действия и устройстве, требования, правила и мероприятия, необходимые для его нормальной эксплуатации, выполнения регламентных, ремонтных работ и технического обслуживания.

Руководство распространяется на пневмоавтомат APS500 и его модификации. Конструкция, компоновка и элементная база пневмоавтомата APS500 может отличаться от указанной в Руководстве по усмотрению изготовителя, без ущерба для функциональности и без изменения его технических характеристик.

Пневмоавтомат не требует специальных знаний и подготовки для эксплуатации конечным пользователем (потребителем). Интерфейс, графические символы и органы управления интуитивно понятны и дополнены наклейкой с краткой пошаговой инструкцией по регулированию давления в шинах автомобиля.

К техническому обслуживанию допускаются только лица, ознакомленные с настоящим Руководством и прошедшие инструктаж по технике безопасности при работе с сосудами под давлением, и имеющие допуск к работе с электрооборудованием до 1 кВ.

К монтажу и вводу в эксплуатацию допускаются лица с группой допуска по электробезопасности не ниже 3 (третьей) и прошедшие аттестацию по промышленной безопасности стационарных компрессорных установок.

Содержание

Содеря	кание		3
1. Ha	значени	e	5
2. Te	хническ	ие характеристики	e
2.1.	Компр	ессорная установка	<i>(</i>
2.2.	Линия	электропитания	<i>(</i>
2.3.	Линия	водоснабжения	e
2.4.	Пневмо	оавтомат	
2.5.	Выход	ной рукав	8
3. Co	остав		9
4. Ус	тройств	о и работа	10
5. Ус	стройств	а и работа составных частей	11
5.1.	Компр	ессорная установка	11
5.2.	Входна	ая магистраль	12
5.3.		оавтомат	
5.3		бщие сведения	
5.3		став пневмоавтомата	
	5.3.2.1.	Блок подготовки воздуха	
	5.3.2.2.	Выходной фильтр	
	5.3.2.3.	Пневмоклапаны	
	5.3.2.4.	Датчик давления	
	5.3.2.5.	Манометр	
	5.3.2.6.	Устройство контроля микроклимата (термостабилизации)	
	5.3.2.7.	Подогрев выходного рукава	
	5.3.2.8.	Блок управления	
	-	ринцип действия	
5.4.		ной рукав	
5.5. Инст		нительное оборудование	33

5.5.1. Защитный лист	33
5.5.2. Кронштейн выходного рукава	34
5.5.3.Информационная наклейка	34
6. Монтаж	35
6.1. Монтаж пневмоавтомата	35
6.1.1. Рекомендации по выбору места монтажа	35
6.1.2. Последовательность установки	37
7. Указания по технике безопасности	38
8. Подготовка к работе и порядок работы	39
8.1. Подготовка пневмоавтомата к работе	39
8.2. Согласование манометра и датчика давления (калибровка датчика)	40
8.3. Порядок работы	41
9. Характерные неисправности и методы их устранения	42
10. Техническое обслуживание	44
10.1. Один раз в сутки	44
10.2. Один раз в квартал	44
10.3. Перед началом зимнего периода	44
10.4. Два раза в год	44
10.5. Один раз в два года	45
Для заметок	46

1. Назначение

Пневмоавтомат предназначен для регулировки давления в шинах автомобилей с разрешенной максимальной массой до 3.5 тонн, прицепов к ним, мотоциклов и мотороллеров с рабочим давлением до 0.4 МПа 1 (4 атм, 4 бар).

Внимание! Категорически запрещается использовать пневмоавтомат для подкачки шин велосипедов, детских колясок и т.д. с внутренним объемом воздушной камеры менее 5 литров.

Конструкция пневмоавтомата не предусматривает отдельной функции контроля (замера) давления в шине.

Здесь под контролем подразумевается замер давления в шине без изменения давления в ней. Конструкция пневмоавтомата такова, что подключение к шине приведет к снижению давления в ней на величину, зависящую от объема шины и внутреннего объема пневморукава.

Пневмоавтомат оборудован краном подачи воды из водопроводной сети. Дополнительно может быть установлен спиральный рукав с пистолетом долива воды.

¹ Здесь и далее по тексту принимается, что 1 МПа = 10 атм = 10 бар. Инструкция по эксплуатации

2. Технические характеристики

2.1. Компрессорная установка

Максимальное рабочее давление, МПа	1.0
Производительность, л/мин	240
Объем ресивера, л	24
Линия электропитания	однофазная
Напряжение питания, В	~220

Здесь приведены только основные параметры, которым соответствует компрессорная установка. В полном объеме технические характеристики приведены в паспорте производителя компрессора.

2.2. Линия электропитания

Тип линии	однофазная
Напряжение питания, В	~220
Сечение токопроводящих жил (не менее), мм ²	2,5
Сечение заземляющего проводника (не менее), мм ²	2,5

2.3. Линия водоснабжения

Условный проход, мм	D1016	
Максимальное давление, МПа	0,8	

2.4. Пневмоавтомат

Комплектация (климатическая)	WINTER	
Диапазон регулировки давления, атм.	0,5 4,0	
Точность регулировки давления, атм.	0,03	
Диапазон измерения манометра, атм.	0,2 6	
Класс точности манометра, (не менее)	1	
Расход воздуха номинальный (макс.), л/мин	140 (250)	
Диапазон рабочих температур, °C	-25 +45	
Потребляемая мощность (макс.), Вт	2000	
Масса, кг	70	
Тип монтажа	напольный	
Габаритные размеры (Ш×В×Г), мм	780×1080×510	
Степень защиты оболочки	IP65	

Turrengayon uuuuy	Среднее время накачки, с		
Типоразмер шины	от 0 до 1 атм	от 1 до 2 атм	от 0 до 2 атм
175/70/R13	25	25	40
175/70/R14	25	25	40
205/55/R16	27	27	45
245/70/R16	40	40	70

2.5. Выходной рукав

Исполнение		Летний	Зимний
Максимальная длина, м		10	
Внутренний диаметр, мм		6 8	8
Наружный диаметр, мм		12 14	14
Максимальное давление (не менее), МПа.		1,0	
	Тип	_	резистивный
Греющий кабель	Напряжение питания, В	-	+24
	Удельное сопротивление, Ом/м	-	0.4 0.6
	Полное сопротивление, Ом	_	6 8

3. Состав

Пневмоавтомат состоит из следующих компонентов:

- 1. Компрессорная установка (компрессора).
- 2. Монтажная панель.
- 3. Панель управления.
- 4. Стойка.
- 5. Тепловентилятор.
- 6. Выходной рукав.
- 7. Лист защитный.
- 8. Кронштейн выходного рукава.
- 9. Наклейка с инструкцией.
- 10. Линия электропитания.
- 11. Трубопровод для подачи воды.
- 12. Кран для подачи воды со спиральным рукавом и пистолетом долива воды.

Состав оборудования формируется при заказе пневмоавтомата.

4. Устройство и работа

Пневмоавтомат, рисунок 1, представляет из себя стойку со встроенным компрессором, автоматом для подкачки шин и краном для долива воды.

Электропитание на пневмоавтомат 1 подается с размыкателя электропитания, находящегося в электрощитовой.

Выходной рукав 4 подключается к ниппелю шины, после чего, используя органы управления можно произвести регулировку давления. Регулировка производится в автоматическом режиме.

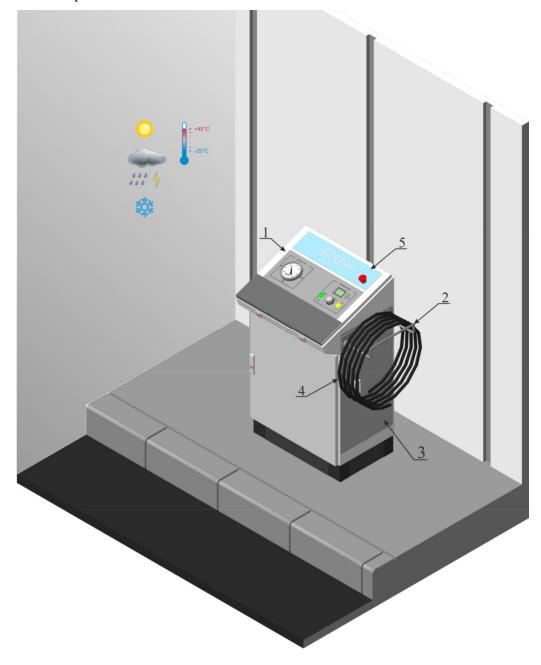


Рисунок 1. Пневмоавтомат

1 – пневмоавтомат; 2 – кронштейн для сматывания рукава; 3 – лист защитный; 4 – выходной рукав; 5 – наклейка с инструкцией.

5. Устройства и работа составных частей

5.1. Компрессорная установка

Компрессорная установка (компрессор) входит в стандартный набор поставки пневмоавтомата. На рисунке 2, в качестве примера, показан внешний вид поршневого одноступенчатого компрессора. Существует большое количество компоновочных схем компрессоров, поэтому внешний вид поставляемого компрессора может отличаться от приведенного на рисунке.

Компрессор состоит из силового агрегата 2 с ресивером 1 и блока пневмоавтоматики 3.

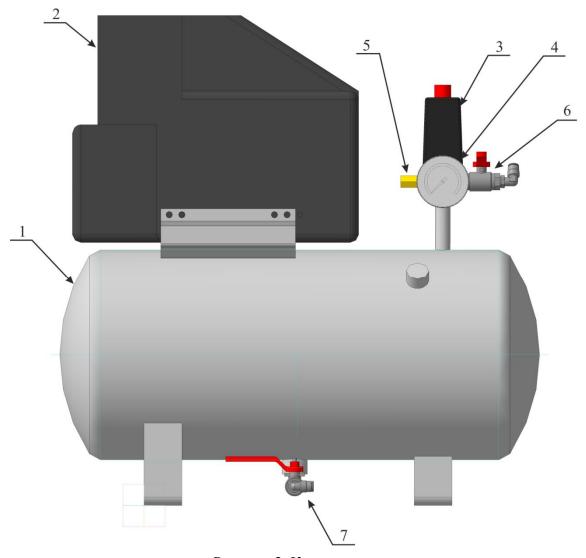


Рисунок 2. Компрессор

- 1 ресивер; 2 силовой агрегат; 3 реле давления; 4 контрольный манометр;
- 5 предохранительный клапан; 6 выходной кран; 7 кран слива конденсата.

Компрессор, устанавливаемый в пневмоавтомат, обеспечивает следующие характеристики пневмоавтомата.

Загруженность пневмоавтомата, среднее число машин в час	1 5
Производительность, л/мин	240
Объем ресивера, л	24
Питание, тип	~220 В, 1ф
Ориентировочная мощность двигателя, кВт	1.5
Максимальное время непрерывной работы, установка на реле времени, мин	4,5

Данные, приведенные в таблице, являются ориентировочными и приведены только в ознакомительных целях.

Ресивер служит накопителем сжатого воздуха, а также компенсатором пульсаций давления во внутренней пневмосети. При работе компрессора в ресивере скапливается конденсат (водяной пар содержащийся в атмосферном воздухе выпавший в виде росы), который необходимо ежедневно сливать, открывая на несколько секунд кран слива конденсата 7 (останавливать компрессор при этом не требуется). В противном случае влага из ресивера может попасть во внутреннюю пневмосеть, что негативно скажется на работе и сроке службы элементов пневматики. Выходной кран 6 служит для подключения ресивера к внутренней пневмосети.

Для визуального контроля давления в ресивере служит контрольный манометр 4.

Предохранительный клапан 5 выполняет функции защитного устройства от превышения максимального давления в ресивере. Работоспособность предохранительного клапана следует проверять ежедневно приведением его в действие вручную на несколько секунд. Эксплуатация компрессора с неисправным предохранительным клапаном запрещена.

Стандартный блок пневмоавтоматики компрессора состоит из реле давления 3 (прессостата, устанавливаемого на ресивер), которое напрямую управляет включением, выключением двигателя и поддерживает давление в заданном, настройками реле, диапазоне. Дополнительный блок защиты, ограничивающий продолжительность включения силового агрегата установлен на монтажной панели. Это позволяет избежать выхода силового агрегата компрессора из строя при течи в пневмосети, неисправности реле давления и перегрузке по расходу. При превышении допустимого времени непрерывной работы силового агрегата, блок защиты отключит его. После этого запуск силового агрегата возможен только после снятия и повторной подачи электропитания.

5.2. Входная магистраль

Две входные магистрали обеспечивают подвод воды из водопровода A3C и электропитания. Конфигурация линии зависит от места установки пневмоавтомата.

Подвод воды должен быть обеспечен металлопластиковой трубой диаметром 16мм с подогревом. На станции должны быть предусмотрен кран для слива воды из трубы.

При скрытой прокладке или прокладке внутри технологических помещений, линия электропитания может быть проложена в гофрированной гибкой трубке из самозатухающего ПВХ. При открытой прокладке рекомендуется линию электропитания помещать в гибкий металлорукав.

Сечение токопроводящих жил кабеля линии электропитания должно быть не менее $2.5~{\rm km}^2$ и соответствовать току автоматического выключателя.

5.3. Пневмоавтомат

5.3.1. Общие сведения

Внешний вид пневмоавтомата показан на рисунке 3. Процесс регулирования давления производится по аналоговому датчику давления, установленному внутри пневмоавтомата (см. далее), задание требуемого давления по цифровому индикатору 2, а манометр 1 используется только как контрольное поверенное средство измерения. Замки открывающихся панелей пневмоавтомата снабжены антивандальными заглушками 3. Для подачи воды предназначен кран 4, который может дополнительно оснащаться спиральным шлангом с пистолетом.

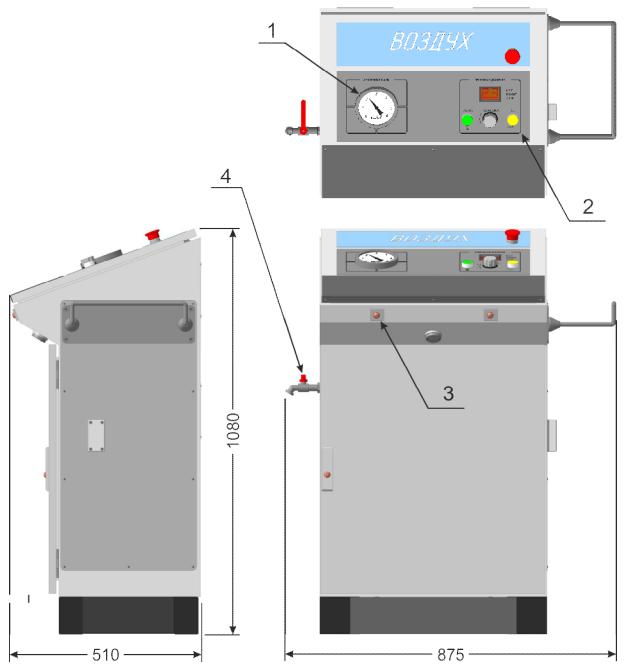


Рисунок 3. Пневмоавтомат, внешний вид

1 – манометр; 2 – органы управления; 3 – замок дверцы; 4 - кран долива воды.

Органы управления пневмоавтомата:

" ТРЕБУЕМОЕ – І ДАВЛЕНИЕ"

– Цифровой индикатор установки давления.

"ЖДИТЕ"

Желтая сигнальная лампа, мигает в процессе регулировки лавления.

"УСТАНОВКА"

- Ручка установки требуемого давления.

"ОК"

Зеленая кнопка с подсветкой. Команда начала процесса регулировки давления. Гаснет до окончания процесса регулировки.

"OTMEHA"

Красная грибовидная кнопка. Принудительное завершение процесса регулировки давления.

Для защиты от несанкционированного проникновения замки открывающихся панелей пневмоавтомата 4 закрываются антивандальными заглушками 2 (рисунок 4). На антивандальной заглушке 2 установлена уплотнительная прокладка 3, которая фиксирует антивандальную заглушку в замке. Извлечь антивандальную заглушку из замка можно с помощью винта 1 из комплекта поставки.

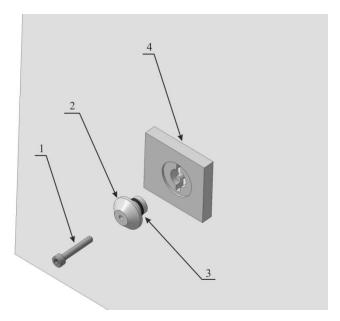


Рисунок 4. Установка антивандальной заглушки

1 – винт; 2 – антивандальная заглушка; 3 – уплотнительная прокладка; 4 – замок дверцы.

Порванные уплотнительные прокладки следует заменять для сохранения защиты от несанкционированного доступа к узлам пневмоавтомата.

На рисунке 5 показано расположение основных компонентов внутри пневмоавтомата при открытой панели управления. В зависимости от комплектации те или иные элементы могут отсутствовать или иметь другой внешний вид.

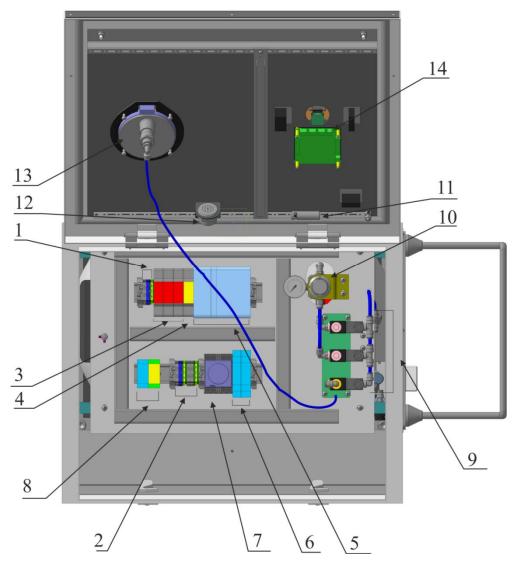


Рисунок 5. Пневмоавтомат с открытой панелью управления

1 – клемма XT1; 2 - клеммы XT2, XT3; 3 – автоматические защитные выключатели; 4 - контактор компрессора; 5 – блоки питания; 6 – промежуточные реле; 7 - реле времени; 8 – нейтральная шина и шина заземления; 9 – клапаны пневматические; 10 – блок подготовки воздуха; 11 – датчик внутренней температуры; 12 – зуммер; 13 – манометр; 14 – блок управления.

Клемма	Назначение	
XT1	Вход электропитания пневмоавтомата (L, N, PE).	
XT2	Подключение силового агрегата компрессора (L, N, PE).	
XT3 Подключение реле давления компрессора (L, L, PE).		

На рисунке 6 показано расположение основных компонентов внутри пневмоавтомата при открытой передней панели. В зависимости от комплектации те или иные элементы могут отсутствовать или иметь другой внешний вид.

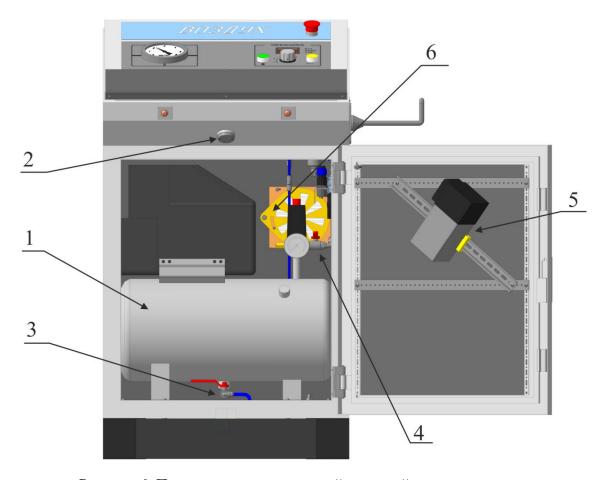


Рисунок 6. Пневмоавтомат с открытой передней панелью

1 – компрессор; 2 - датчик наружной температуры; 3 – кран слива конденсата; 4 - кран воздушный выходной; 5 – тепловентилятор; 6 – решетка вентиляции.

На рисунке 7 показано устройство пневмоавтомата, оборудованного краном долива воды 6. Подключение воды к внутренней арматуре выполняется гибкой подводкой для воды 3. для осуществления продувки магистрали используется кран 2 и пневматическая трубка 4.

Во время эксплуатации пневмоавтомата в зимнее время при отрицательных значениях температуры воздуха возможно замерзание магистрального трубопровода между станцией и пневмоавтоматом. В таких случаях необходимо отключать подачу воды на пневмоавтомат краном, расположенным на станции, а магистральную трубу продувать путем закрытия крана 5 и открытия крана 2 и открытия крана слива воды на станции. В таком случае воздух из ресивера компрессора будет поступать в магистральную трубу и выдувать из нее воду. После окончания продувки кран 2 необходимо закрыть.

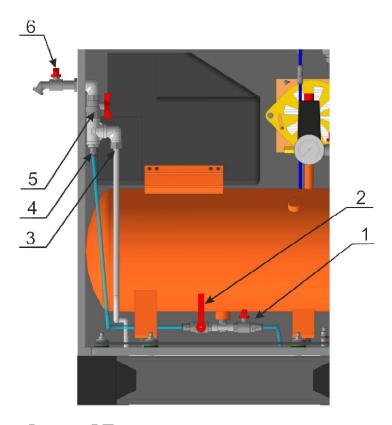


Рисунок 7 Пневмоавтомат с краном долива воды

1 — кран слива конденсата; 2 - кран продувки магистрали воды; 3 — подключение гибкой подводки; 4 - подключение пневматической трубки для продува; 5 — кран; 6 — кран снаружи пневмоавтомата.

На рисунке 8 показано расположение основных компонентов внутри пневмоавтомата в зоне крепления выходного рукава. В зависимости от комплектации те или иные элементы могут отсутствовать или иметь другой внешний вид.

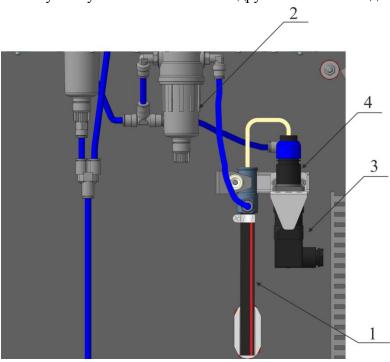


Рисунок 8 Пневмоавтомат, компоновка в зоне крепления выходного рукава 1 – выходной пневморукав; 2 - выходной фильтр; 3 – датчик давления; 4 - разъем подключения обогрева зимнего рукава.

На рисунке 9 показано расположение монтажных и подводных отверстий пневмоавтомата. На верхнем рисунке – вид на монтажную плиту компрессора (элементы, располагаемые на плите, условно не показаны), на нижнем рисунке – вид на цоколь пневмоавтомата.

Пневмоавтомат должен устанавливаться на бетонной плите. Для этого, в цоколе пневмоавтомата выполнены крепежные отверстия.

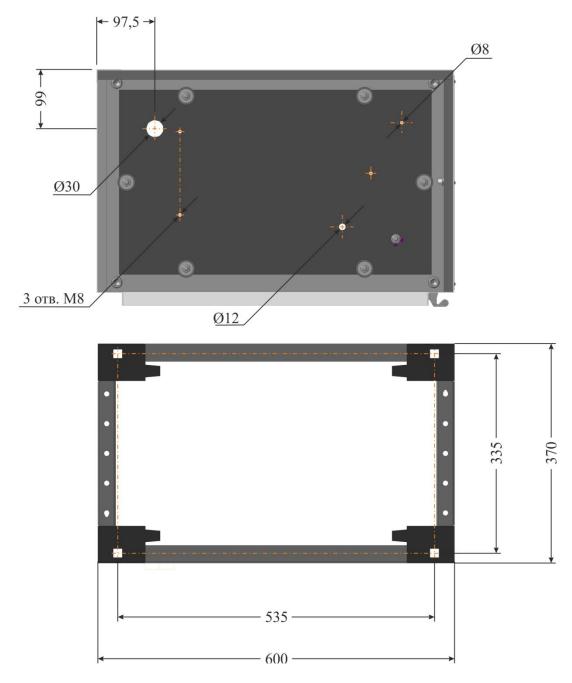


Рисунок 9 Расположение монтажных отверстий для крепления компрессора и пневмоавтомата

Отверстие Ø30 предназначено для ввода линии электропитания и гибкой подводки для воды в пневмоавтомат. Отверстие Ø8 служит для вывода трубки слива конденсата из блока подготовки воздуха. Отверстие Ø12 служит для вывода трубки слива конденсата из ресивера. Для закрепления компрессора предназначены 3 отверстия М8.

5.3.2. Состав пневмоавтомата

5.3.2.1. Блок подготовки воздуха

Блок подготовки воздуха рисунок 10 состоит из регулятора давления со встроенным фильтром и функцией автоматического сброса конденсата. На монтажной плите пневмоавтомата смонтирован кронштейн для его крепления.

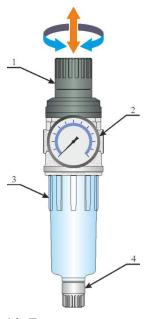


Рисунок 10. Блок подготовки воздуха

1 – ручка регулятора давления; 2 – контрольный манометр; 3 – корпус фильтра (стакан); 4 – механизм автоматического сброса конденсата.

Регулятор давления поддерживает давление на заданном уровне. Для настройки давления необходимо потянуть ручку регулятора 1 вверх до щелчка, затем, вращая ее, установить давление, ориентируясь на показания контрольного манометра 2. Вращение по часовой стрелке увеличивает давление, против часовой уменьшает. По окончании регулировки необходимо нажать на ручку регулятора для ее фиксации. Производить регулировку давления необходимо при поданном давлении на вход регулятора.

В корпус фильтра 3 включен механизм автоматического сброса конденсата 4. Сброс конденсата осуществляется в общую линию сброса давления. В зависимости от типа устройства автоматического сброса, сброс конденсата осуществляется либо по заполнению корпуса фильтра, либо по изменению расхода в пневмосети.

При сильном засорении корпуса фильтра необходимо отключить подачу воздуха на блок подготовки, демонтировать блок с кронштейна и аккуратно, не прикладывая значительных усилий (вручную, без применения инструмента) открутить нижнюю (прозрачную) часть корпуса фильтра (стакан) не повредив при этом резиновое кольцо уплотнения. Очистить его без применения растворителей (водой) просушить и собрать в обратном порядке. Установить блок на кронштейн и убедиться в исправности механизма автоматического сброса и отсутствии утечек воздуха.

Неисправный или поврежденный блок подготовки воздуха подлежит замене. Наличие крупных частиц или металлической стружки во входном воздухе могут повредить фильтр, поэтому после проведения ремонтных работ на пневмосети и перед вводом в эксплуатацию рекомендуется сначала "продуть" пневмосеть.

5.3.2.2. Выходной фильтр

Грязь и песок с улицы и из ниппелей шин попадает в выходной рукав и при сбросе давления, поднимается по нему и поступает в пневмосеть пневмоавтомата, где может вызвать нарушение работы клапанов. Для устранения этого эффекта на выходной линии пневмоавтомата установлен выходной фильтр (рисунок 11).

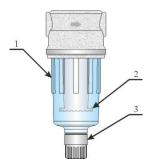


Рисунок 11. Выходной фильтр

1 — корпус фильтра (стакан); 2 — фильтрующий элемент; 3 — механизм сброса конденсата (ручной или автоматический).

Выходной фильтр требует регулярной очистки. Для очистки можно не снимать фильтр с монтажной плиты. Стакан 1 корпуса фильтра необходимо аккуратно вручную открутить, очистить, промыть водой и просушить. Для очистки фильтрующего элемента 2 необходимо подать воздух со стороны пневмопанели при снятом стакане (например несколько раз нажав на кнопку накачки или включить клапан накачки через сервисное меню блока управления). Установить стакан на место обращая внимание на правильное расположение резинового уплотнительного кольца. После установки необходимо убедиться в отсутствии утечек воздуха.

Поврежденный фильтр подлежит замене.

5.3.2.3. Пневмоклапаны

Пневмоклапаны (рисунок 12) используются для управления потоками сжатого воздуха. В пневмоавтомате установлено три клапана: на линии накачки; на линии сброса; на линии манометра. На линии накачки и сброса установлены нормально закрытые клапана, на линии манометра нормально открытый клапан. Привод клапанов односторонний электрический от соленоида.

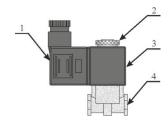


Рисунок 12. Пневмоклапан

1 – электрический разъем; 2 – гайка крепления соленоида; 3 – соленоид; 4 – корпус клапана.

Клапаны чувствительны к наличию крупных частиц в воздухе (грязь, стружка, песок и т.д.). При попадании такой частицы в корпус клапана, он не сможет полностью перекрывать воздушный поток, оставаясь частично открытым. Это может произойти при повреждении входного или выходного фильтров пневмоавтомата.

При засорении клапана накачки, воздух будет вытекать из выходного рукава. При засорении клапана сброса, подключение шины с ненулевым давлением к рукаву, воздух будет истекать по линии сброса. При засорении клапана манометра он либо не будет реагировать на подключение шины, либо не будет отключаться на время накачки. Наиболее вероятно засорение клапана сброса, так как по нему выходит воздух из шины. Засорение клапана накачки маловероятно, т.к. для этого должен быть поврежден фильтр блока подготовки воздуха. Через клапан манометра практически нет расхода воздуха, поэтому его засорение крайне маловероятно.

Если есть признаки засорения клапана и корпус клапана при этом не пострадал, можно восстановить его работоспособность, удалив загрязнение. Для этого необходимо отвернуть гайку крепления соленоида 2 и снять соленоид 3 вместе с электрическим разъемом 1. На корпусе клапана 4 открутить два винта крепления привода клапана придерживая его рукой (внутри механизма привода есть возвратная пружина, запирающая клапан, которая при неаккуратном обращении может выскочить). Снять привод клапана, и очистить внутреннюю полость клапана. Собрать клапан в обратном порядке и проверить его работоспособность. Внешний вид клапана (рис. 11) может отличаться от установленного в пневмоавтомате.

5.3.2.4. Датчик давления

Сигнал с датчика давления используется блоком управления пневмоавтомата для регулировки давления. К блоку управления могут подключаться датчики со стандартными выходными сигналами тока или напряжения.

Сигнал тока: 4...20 мА (по умолчанию).

Сигнал напряжения: 0...10 В.

Рекомендуемый диапазон давления датчика: 0...6 бар.

5.3.2.5. Манометр

Манометр служит для визуального контроля давления в шине.

Манометр является средством измерения, для которого установлен срок периодической поверки, указанный в паспорте прибора. Эксплуатация манометра с истекшим сроком поверки запрещена. С обратной стороны манометра, при поверке, наносится клеймо с указанием квартала и года ее проведения. В отдельных случаях, клеймо может наноситься на смотровое стекло прибора.

Манометр характеризуется диапазоном измерения и классом точности. Принято диапазон давления выбирать таким образом, чтобы максимальное рабочее давление составляло (при переменном давлении) 2/3 от максимального значения диапазона. Для подкачки шин с давлением до 4 атм., таким образом, максимальное значение диапазона составляет 6 атм. Класс точности определяет погрешность измерения прибора и указывается на шкале как цифра рядом с символом окружности разомкнутой на 1/4 (обычно справа внизу). Цифра обозначает погрешность прибора в процентах, плюс-минус, от полной шкалы. Это суммарная погрешность, куда входят, нелинейность, смещение нуля, температурный дрейф и т.д. Таким образом, абсолютная погрешность манометра с диапазоном измерения до 6 атм. и классом точности 1 составит ±0,06 атм, что чуть больше половины цены деления манометра в 0,1 атм. Визуально, погрешность стрелочного индикатора может наносится на первом делении шкалы в виде закрашенного сектора, размеры которого соответствуют предельным значениям абсолютной погрешности.

Манометр может быть поврежден в результате подачи на него слишком высокого давления, например при подключении шины грузового автомобиля, с рабочим давлением

выше 6 атм. При этом возможна деформация измерительного механизма. Наиболее характерным признаком этого будет то что стрелка манометра не будет ложится на упор (ограничитель) при нулевом избыточном давлении и комнатной температуре.

Поврежденный манометр не ремонтопригоден и подлежит обязательной замене. Эксплуатация пневмоавтомата с поврежденным манометром запрещена.

Как указывалось выше, манометр служит для визуально контроля давления, блок управления при работе использует показания датчика давления. Для правильной работы пневмоавтомата необходимо согласование показаний манометра с сигналом датчика давления. Согласование манометра и датчика давления производится при первом включении пневмоавтомата и при каждой замене манометра. Согласование производиться программными средствами блока управления из соответствующего пункта сервисного меню.

5.3.2.6. Устройство контроля микроклимата (термостабилизации)

Устройство контроля микроклимата служит для поддержания оптимальной температуры внутри пневмоавтомата при эксплуатации в условиях пониженных и низких температур окружающей среды. Комплектация пневмоавтомата таким устройством рекомендуется, если температура эксплуатации будет ниже +5°C.

В устройство контроля микроклимата входит тепловентилятор, промежуточное реле включения тепловентилятора, датчик внутренней температуры и термоизоляция стенок пневмоавтомата.

Датчик внутренней температуры и промежуточное реле подключаются к блоку управления пневмоавтомата. Температура включения и отключения тепловентилятора задается в блоке управления. Опционально, промежуточное реле тепловентилятора и датчик внутренней температуры могут быть заменены биметаллическим термореле. При этом устройство термостабилизации будет работать независимо от блока управления.

Стенки пневмоавтомата изнутри обшиваются термоизолирующим материалом, снижая отдачу тепла в окружающую среду, что позволяет использовать тепловентилятор небольшой мощности.

На задней стенке пневмоавтомата расположены три вентиляционных окна, оборудованных заслонками. В теплое время года заслонки должны находиться в открытом положении для охлаждения оборудования, установленного внутри. В холодное время года заслонки должны быть закрыты для снижения отдачи тепла в окружающую среду.

Эксплуатация и хранение пневмоавтомата при температурах ниже 0°C с выключенным устройством термостабилизации запрещена. При невозможности включения устройства термостабилизации, пневмоавтомат должен быть демонтирован и помещен для хранения в отапливаемое помещение.

5.3.2.7. Подогрев выходного рукава

Для подогрева выходного рукава пневмоавтомат комплектуется блоком питания +24В и розеткой для подключения зимнего рукава.

Подогрев выходного рукава позволяет эксплуатировать пневмоавтомат при температурах ниже 0° С, предотвращая образование ледяных пробок.

Комплектовать пневмоавтомат устройством подогрева выходного рукава рекомендуется, если в месте установки среднесуточная температура на длительное время опускается ниже -5° C. Как показывает практика, эксплуатация при температуре до -5° C, практически никогда не приводит к образованию льда в рукаве, за исключением случаев резкого понижения температуры (в течении нескольких часов) с положительной до отрицательной в сочетании с высокой влажностью.

5.3.2.8. Блок управления

Блок управления (рисунок 13) представляет собой плату, с лицевой стороны которой расположен цифровой индикатор 1. С обратной стороны платы расположены винтовые клеммы X1...X7 для подключения внешних элементов, кнопка доступа к системному меню 2 и сервисный разъем 3 для обновления микропрограммы блока управления. Назначение клемм приведено ниже. Также на рис. 12 приведена мнемосхема подключения внешних элементов.

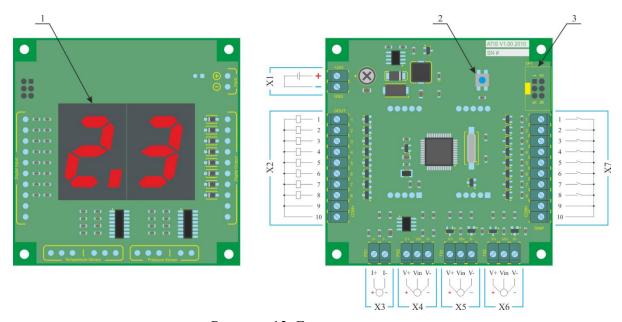


Рисунок 13. Блок управления

1 – цифровой индикатор; 2 – кнопка доступа к системному меню; 3 – сервисный разъем; X1...X7 – винтовые клеммы.

Клеммник	Обозначение	Описание
X1	+24V / PWR	Питание блока управления +24 В
X2	DOUT	Двоичные выходы (общий анод +24 B; $I_{max} = 0.3$ A, $I_{\Sigma} = 1$ A)
Х3	PS1	Датчик давления 1, токовый вход (4 20 мА)
X4	PS2	Датчик давления 2, вход напряжения (0 +10 B)
X5	TS1	Датчик внешней температуры, вход напряжения (0 +2.5 B)
X6	TS2	Датчик внугренней температуры, вход напряжения (0 +2,5 B)
X7	DINP	Двоичные входы (общий анод + 24 В; $R_{\text{вх}}$ = 12 кОм)

Клемма	Обозначение	Функция
X1:1	+24V	Анод источника питания (+)
X1:2	GND	Катод источника питания (–)

Клемма	Обозначение	Функция	
X2:1	1	Клапан накачки	
X2:2	2	Клапан сброса	
X2:3	3	Клапан манометра	
X2:4	4	Сигнальная лампа "ЖДИТЕ"	
X2:5	5	Подсветка кнопки "ОК"	
X2:6	6	Зуммер	
X2:7	7	Управление внешним обогревом	
X2:8	8	Управление внутренним обогревом	
X2:9, 10	COM+	Общий анод, +24 В	

Клемма	Обозначение	Функция	
X3:1	I+	Плюс питания датчика давления (+24 В)	
X3:2	I–	Минус питания датчика давления (0 B), R _{изм} = 75 Ом	
X4:1	V+	Плюс питания датчика давления (+24 В)	
X4:2	Vin	Сигнал датчика давления (0 +10 B), $R_{\text{вх}} = 400 \text{кOm}$	
X4:3	V–	Минус питания датчика давления (0В)	
X5:1, X6:1	V+	Плюс питания датчика температуры (+4,6 В)	
X5:2, X6:2	Vin	Сигнал датчика температуры (0 +2,5 В), $R_{\rm BX}$ = 10 кОм Входная характеристика соответствует датчику температуры: "Analog Device TMP36"	
X5:3, X6:3	V–	Минус питания датчика температуры (0 В)	

Клемма	Обозначение	Функция	
X7:1	1	Не задействована	
X7:2	2	Не задействована	
X7:3	3	Не задействована	
X7:4	4	Внешняя ошибка (внешняя аварийная сигнализация)	
X7:5	5	Кнопка "ОК"	
X7:6	6	Энкодер, канал А ("УСТАНОВКА")	
X7:7	7	Энкодер, канал В ("УСТАНОВКА")	
X7:8	8	Кнопка "ОТМЕНА"	
X7:9, 10	COM+	Общий анод, +24В	

Для настройки и диагностики блока управления используется сервисное меню. Доступ к меню возможен двумя способами: нажатием соответствующей кнопки на плате или введением кода доступа. Код доступа состоит из 4 цифр, в диапазоне от 0.0 до 9.9 (ограничение на диапазон накладывается допустимым диапазоном регулировки давления, по умолчанию 0.5 ... 4.0).

Для ввода кода доступа необходимо удерживая кнопку "ОТМЕНА" нажатой, последовательно набрать на цифровом индикаторе числовую последовательность кода, подтверждая ввод каждого числа однократным нажатием кнопки "ОК".

Код доступа по умолчанию: 1.0 - 2.0 - 3.0 - 4.0

Сменить код доступа можно задав новое значение в соответствующем меню.

Меню состоит из символьных имен параметров и связанных с ними значений или вложенных подменю. Значения могут быть цифровыми или символьными. Ручкой "УСТАНОВКА" можно передвигаться по пунктам меню или изменять связанные с ними значения. Переход от символьного имени к значению и обратно осуществляется кнопкой "ОК".

Параметры, доступ к которым осуществляется через сервисное меню, хранятся в энергонезависимой памяти блока управления. Вносимые изменения принимаются К выполнению немедленно, но не сохраняются Запись энергонезависимой памяти автоматически. параметров энергонезависимую память осуществляется соответствующей функцией сервисного меню (см. далее).

Блок управления проверяет целостность данных, хранящихся в энергонезависимой памяти, при каждом включении. Если данные повреждены, на цифровом индикаторе, при включении, последовательно отображаются сообщения Ег и гд в сочетании с подачей звукового сигнала, после чего загружаются настройки по умолчанию.

	Меню, верхний уровень			
Символьное имя	Расшифровка Ед. изм.		Описание	
58	Set Point	атм	Требуемое давление (рабочий режим)	
(P	Current Pressure	атм	Текущее давление	
P5	Pressure Speed	атм с	Текущая скорость изменения давления	
EŁ	Current Temperature	ı	Текущая температура	
58	Sensors	-	Датчики давления	
ρ.	Parameters	-	Параметры	
do	Digital Outputs	-	Просмотр состояния и ручное управление двоичными выходами	
di	Digital Inputs	_	Просмотр состояния двоичных входов	
5 <i>t</i>	Setup	-	Настройки блока управления	

— текущая температура					
Символьное имя	Расшифровка	Ед. изм.	Описание		
E 1	Temperature 1	°C	Внешняя температура (по датчику подключенному к клеммам TS1)		
62	Temperature 2	°C	Внутренняя температура (по датчику подключенному к клеммам TS2)		
rt	Return	_	Возврат на предыдущий уровень		

5 — датчики давления				
Символьное имя	Расшифровка	Ед. изм.	Описание	
50	Source	симв.	Выбор активного датчика давления:	
			🤼 – вход тока PS1 (по умолчанию)	
			Р – вход напряжения PS2	
50	Sensor Calibrate	_	Калибровка активного датчика давления	
rt	Return	_	Возврат на предыдущий уровень	

5€ → §	5 € → 5 € – калибровка активного датчика давления				
Символьное имя	Расшифровка	Ед. изм.	Описание		
PL	Pressure Low	атм	Первая и вторая контрольные точки давления, задаются и отображаются последовательно; до отображения численного значения вращение регулятора		
PH	Pressure High	атм	"УСТАНОВКА" против часовой стрелки открывает клапан сброса, по часовой открывает клапан накачки.		
AC	Accept Changes	_	Применить изменения настроек датчика.		
[n	Cancel	_	Отменить изменения настроек датчика.		

Р- – параметры						
Символьное имя	Диапазон значений	Значение по умолчанию	Ед. изм.	Описание		
2	0.0 1.0	0.5	атм	Нижняя граница регулировки давления		
PZ	2.0 9.9	4.0	атм	Верхняя граница регулировки давления		
РЭ	0 99	4	ADC	Допуск начала регулировки (при меньшем отклонении регулировка не производится)		
рч	0 99	0	$\frac{ADC}{0.1 \times c}$	"Нулевая" скорость изменения давления, при которой проводится замер давления		
P5	1.0 9.9	1.0	с	Длительность первого (измерительного) цикла накачки		
P6	0 99	25	<u>c</u> 100	Компенсация времени на переходные процессы (наполнение рукава, деформации, температура)		
23	0 99	25	c 100	Задержка начала измерения давления после закрытия клапанов		
P8	1.0 9.9	1.0	мин.	Максимальное время открытия клапанов в цикле		
<i>P9</i>	-9 60	0	°C	Температура включения внешнего обогрева		
PA	0 10	5	°C	Температурный гистерезис отключения внешнего обогрева		
Рь	-9 60	20	°C	Температура включения внутреннего обогрева		
PE	0 10	3	°C	Температурный гистерезис отключения внутреннего обогрева		
rt	-	_	_	Возврат на предыдущий уровень		

do – np	 просмотр состояния и ручное управление двоичными выходами 				
Символьное имя	Расшифровка	Ед. изм.	Описание		
01	Output 1	симв.	Состояние выхода:		
			Б – отключен		
08	Output 8		оп – включен		
rt	Return	_	Возврат на предыдущий уровень		

При просмотре состояния двоичных выходов вращением ручки "УСТАНОВКА" можно вручную ими управлять (если это не противоречит управляющей программе). Поворот по часовой стрелке включает выход, против часовой отключает.

→ просмотр состояния двоичных входов				
Символьное имя	Расшифровка	Ед. изм.	Описание	
	Input 1	симв.	Состояние входа:	
			Б – отключен	
18	Input 8		оп – включен	
rt	Return	_	Возврат на предыдущий уровень	

5 E – на	5 — настройки блока управления			
Символьное имя	Расшифровка	Ед. изм.	Описание	
Ad	Analog to Digital reference	В	Величина опорного напряжения АЦП. Представлена в виде суммы двух разрядов, старшего (H) и младшего (L). H.L в вольтах (по умолчанию 2.5B)	
			→ старший разряд (02.0B)	
			_ младший разряд (0.50В)	
T.	Lock Code	_	Код доступа к сервисному меню. Храниться в виде последовательности 4 чисел (L1 – L2 – L3 – L4). Диапазон значений каждой цифры от 0.0 до 9.9 (см. примечание). Цифры кода по умолчанию:	
			Вводятся последовательно, как значения требуемого давления при зажатой кнопке "ОТМЕНА".	
			Прим. Если цифры кода не лежат в диапазоне между значениями параметров Р1 и Р2, код ввести не удастся.	
			- 4.0	
<i>EE</i>	External Error	-	Использование функции внешней ошибки на входе X7:4. Если функция разрешена, то отсутствие сигнала на входе приводит к блокированию системы управления, при этом на цифровом индикаторе выводится сообщение Ег (Error) сопровождающееся звуковым сигналом и попеременным включением ламп подсветки "ЖДИТЕ" и кнопки "ОК".	
			Е п – разрешить (Enable)	
			35 – запретить (Disable) (по умолчанию)	
rd	Restore Defaults	_	Восстановление настроек по умолчанию. Сбрасываются настройки всех параметров; величина опорного напряжения АЦП; код доступа; настройки датчиков давления.	
			Р [– применить (Accept)	
			[п – отмена (Cancel)	
55	Save Settings	_	Сохранение настроек в энергонезависимой памяти	
rt	Return	_	Возврат на предыдущий уровень	

5.3.3. Принцип действия

Принцип действия пневмоавтомата заключается в измерении скорости изменения давления в шине с последующим регулированием времени цикла открытия/закрытия клапанов накачки или сброса.

В первом цикле блок управления измеряет давление в шине, сравнивает его с требуемым и открывает на фиксированное (заданное при настройке) время клапан накачки или сброса. После закрытия клапана производится повторный замер давления и вычисляется скорость изменения давления. Полученное значение скорости используется для расчета времени, на которое необходимо повторно открыть клапан, для завершения процесса регулировки давления в шине. Поскольку значение скорости изменения давления, полученное описанным способом, не отличается высокой точностью, а технологический процесс накачки осуществляется по неполным данным (без учета расхода воздуха), расчетное время, как правило, будет заведомо меньше необходимого. Поэтому процесс регулировки повторяется циклически, при этом в каждом последующем цикле значение скорости изменения давления вычисляется заново, на основании данных предыдущего цикла.

Число циклов зависит от большого количества влияющих факторов, к основным можно отнести (в порядке убывания значимости): состояние ниппеля шины; разность давлений на входе пневмоавтомата и шине; условный проход пневматических компонентов; длина выходного рукава; типоразмер шины; температура шины. Число циклов для накачки составляет от 2 до 5, для сброса давления может достигать 10-12.

Для визуального контроля давления используется манометр на лицевой панели. Манометр подключен к выходной пневмолинии автомата (выходному рукаву). При подключении шины к выходному рукаву, манометр покажет текущее давление в шине. Во время процесса регулировки давления включается нормально открытый клапан манометра, изолируя манометр от выходной пневмолинии. По окончании процесса клапан отключается и манометр показывает давление в шине. Отключение манометра на время процесса регулировки давления необходимо для того, чтобы не вводить в заблуждение пользователя, поскольку при открытом клапане накачки манометр покажет значение близкое к давлению в пневмосети, а при сбросе близкое к нулю. В обоих случаях манометр в процессе регулировки будет показывать неверные данные по давлению в шине.

5.4. Выходной рукав

Устройство летнего и зимнего выходного рукава показаны на рисунке 14. Летний выходной рукав состоит из переходника 1, подключаемого к выходной линии пневмоавтомата быстроразъемным штуцером 2, непосредственно рукава 3 и шинной насадки 4. Рукав к переходнику и шинной насадке крепится хомутами 5. В состав зимнего рукава входит, помимо этого, кабельный разъем 6 для подключения резистивного греющего кабеля 7, закладываемого внутрь рукава. Также различается конструкция переходника 1 для зимнего и летнего рукава.

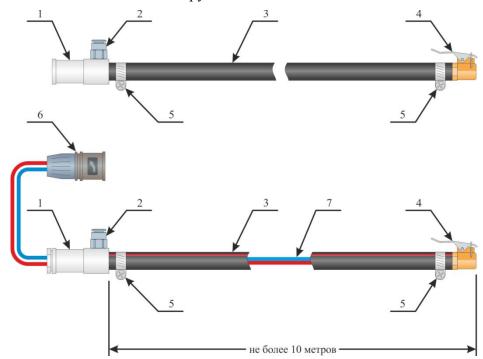


Рисунок 14. Выходной рукав: летний (вверху) и зимний (внизу)

1 – переходник; 2 – штуцер; 3 – рукав; 4 – шинная насадка (цанга); 5 – хомут; 6 – кабельный разъем; 7 – греющий кабель.

Максимальная длина рукава ограничена 10 метрами из технологических соображений, поскольку увеличение длины ведет к ухудшению потребительских качеств (увеличивается время накачки, ухудшается качество регулирования) пневмоавтомата. Это обусловлено тем, что увеличение длины рукава увеличивает "паразитный" объем между пневмоавтоматом и шиной. Из тех же соображений ограничен и внутренний диаметр рукава; рекомендуемый внутренний диаметр летнего рукава составляет 6 мм, зимнего 8 мм.

Греющий кабель, закладываемый внутрь рукава, позволяет предотвратить образование льда внутри рукава. Мощность греющего кабеля определяется его удельным и полным сопротивлением и ограничивается мощностью блока питания.

Зимний рукав больше подвержен износу, по сравнению с летним. Слабым местом является греющий кабель, прочность которого меньше прочности рукава и который в отличии от резинового рукава практически не растягивается. При эксплуатации зимнего рукава, следует избегать образования петель и изломов рукава, так как в узких местах греющий кабель может застревать и при попытках растянуть или распрямить рукав силой, возможен его обрыв. Для предотвращения сильной деформации зимнего рукава поверх него можно надевать спиральный гибкий бандаж для подвижных соединений, что увеличит его жесткость и увеличит радиус изгиба. Также бандаж дополнительно защитит внешнюю поверхность рукава от механических повреждений.

5.5. Дополнительное оборудование

5.5.1. Защитный лист

Защитный лист (рисунок 15) предназначен для защиты от повреждений боковой стенки пневмоавтомата. Лист крепится к пневмоавтомату с помощью тяговых заклепок. Для крепления кронштейна рукава на листе сделаны отверстия. Материал листа – шлифованная нержавеющая сталь.

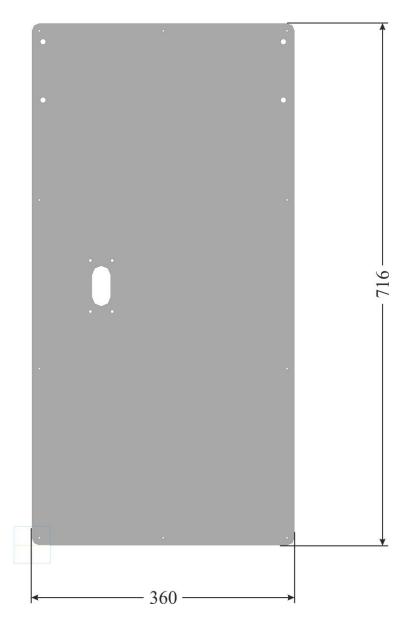


Рисунок 15. Защитный лист

5.5.2. Кронштейн выходного рукава

Кронштейн выходного рукава предназначен для хранения на нем рукава в смотанном состоянии. Сматывать рукав нужно без натяга для исключения повреждения рукава и греющего кабеля. "Мягко" смотанный рукав не теряет свою форму и быстро расправляется при подкачке шин.

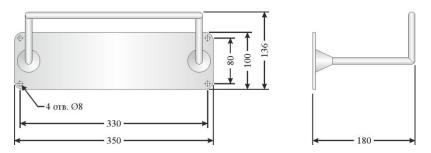


Рисунок 16. Кронштейн выходного рукава

5.5.3.Информационная наклейка

Информационная наклейка (рисунок 17) предназначена для размещения краткой справочной информации по регулированию давления в шинах. Информационная наклейка размещена на панели управления пневмоавтомата непосредственно над органами управления. Графическое наполнение наклейки как правило выполняется в соответствии со стилем окружения.

Рисунок 17. Информационная наклейка

На рисунке 17 показано рекомендуемое оформление наклейки. Цветовое оформление и логотип компании выполняются производителем под конкретное место установки.

Наклейка изготавливается из глянцевой самоклеющейся пленки с ламинированием, печать выполняется водостойкими чернилами.

6. Монтаж

6.1. Монтаж пневмоавтомата

6.1.1. Рекомендации по выбору места монтажа

Выбор места установки играет важную роль с точки зрения удобства использования. Избегайте устанавливать пневмоавтомат в тех местах, где остановившиеся транспортные средства создадут помехи движению (сквозной проезд и сужение) автомобилей. Рекомендуется выбирать место установки так, чтобы парковочная площадка пневмоавтомата, вмещала не менее 2 автомобилей (например, справа и слева от автомата). При этом очередь из автомобилей не должна препятствовать отъезду из сервисной зоны. На рисунке 18 приведена упрощенная схема расположения с указанием боковых зазоров до рядом стоящего оборудования и стен здания. На рисунке 19 представлена схема монтажа пневмоавтомата

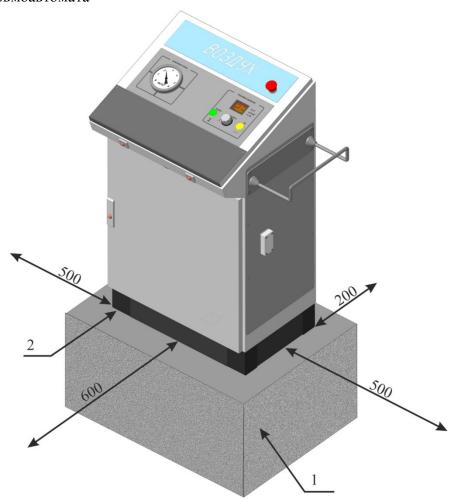
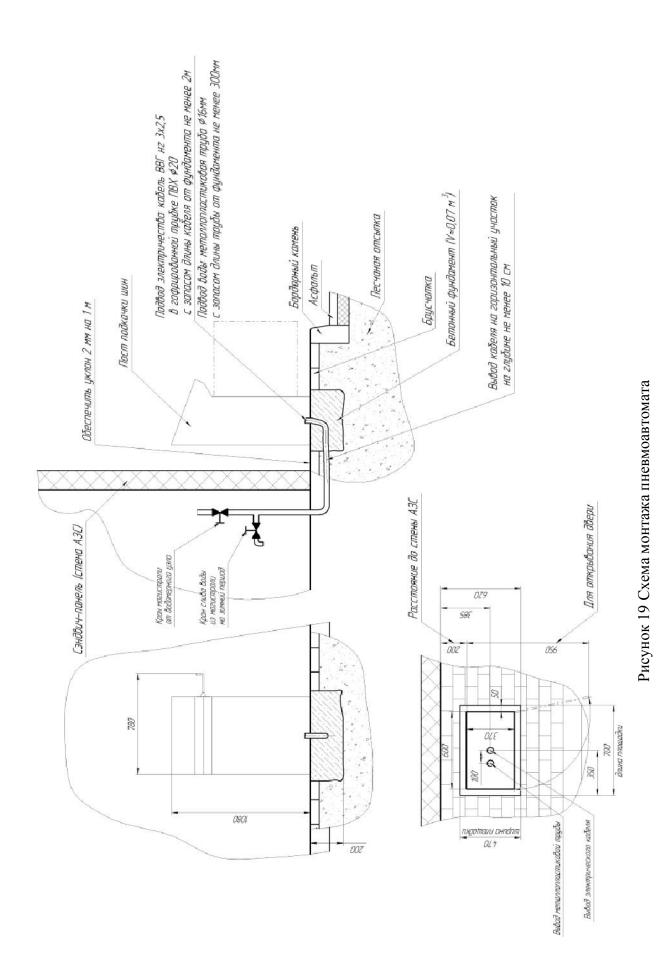



Рисунок 18. Рекомендуемая схема расположения пневмоавтомата

1 – бетонный фундамент; 2 – монтажная заглушка.

Передний зазор необходим для открывания дверцы пневмоавтомата и выполнения сервисного обслуживания. Зазор справа и слева обеспечивает удобство эксплуатации. Задний зазор необходим для вентилирования корпуса. Указанные значения являются минимально допустимыми. Пневмоавтомат должен устанавливаться на подготовленный фундамент с проведенными линией электропитания и трубой подачи воды.

36 APS500

6.1.2. Последовательность установки

- 1. Разметить фундамент в соответствии с рисунком 9;
- 2. Просверлить в фундаменте отверстия для установки анкерных болтов; (диаметр болтов должен быть не менее М10);
- 3. Извлечь пневмоавтомат из транспортной упаковки;
- 4. Подключить гибкую подводку к трубе водоснабжения;
- 5. Завести гибкую подводку и кабель электропитания в пневмоавтомат через отверстие в плите компрессора;
- 6. Установить автомат на анкерные болты, поставить на место монтажные заглушки;
- 7. Подключить гибкую подводку к арматуре пневмоавтомата (рисунок 7);
- 8. Подключить пневмоавтомат к линии электропитания (клеммы XT1; перед подключением убедиться в отсутствии напряжения в питающем кабеле);
- 9. Проверить подключение линии пневмопитания к выходному крану компрессора, трубку от крана слива конденсата вывести в отверстие в плите компрессора;
- 10. Проверить подключение кабеля питания силового агрегата компрессора к клеммам XT2;
- 11. Проверить подключение кабеля реле давления к клеммам ХТ3;
- 12. Установить выходной рукав (рисунок 8).

7. Указания по технике безопасности

При эксплуатации пневмоавтомата необходимо соблюдать "Правила технической эксплуатации электроустановок потребителей", "Правила техники безопасности при эксплуатации электроустановок потребителей", "Правила устройства и безопасной эксплуатации сосудов, работающих под давлением" и иные нормативные документы, регулирующие положения по безопасности.

Персонал, осуществляющий техническое обслуживание пневмоавтомата, должен быть ознакомлен в установленном порядке, под расписку в специальном журнале, с правилами техники безопасности при работе с электрическими установками и инструкцией по эксплуатации пневмоавтомата.

Перед подключением пневмоавтомата к сети питания, все элементы, которые могут оказаться под напряжением, должны быть надежно заземлены. Персонал, обслуживающий автомат, обязан следить за исправностью проводов заземления и своевременно устранять обнаруженные дефекты.

Во время ремонтных работ, при открытых панелях, следует соблюдать особую осторожность, т.к. отдельные элементы электромонтажа имеют опасное для жизни напряжение. К таким элементам, прежде всего, относятся места присоединения шин и проводов к автоматическим выключателям, клеммам и разъемам. В процессе выполнения ремонтных работ запрещается производить смену деталей под напряжением, оставлять оборудование включенным, при временном отсутствии лиц, производящих работу.

8. Подготовка к работе и порядок работы

8.1. Подготовка пневмоавтомата к работе

- 1. Осмотреть пневмоавтомат на наличие механических повреждений.
- 2. Произвести внешний осмотр компрессора, убедиться в отсутствии внешних механических повреждений, подтеков масла.
- 3. Проверить уровень масла в картере компрессора.
- 4. Внутри пневмоавтомата включить автоматы QF1, QF2 и QF3,
- 5. Подать на пневмоавтомат электропитание.
- 6. При включении электропитания произойдет запуск компрессора, проконтролировать правильность срабатывания реле давления при давлении 8 атм., при необходимости отрегулировать реле. Если реле имеет настраиваемую разницу давления включения, проверить его настройку (нижняя граница давления включения должна составлять 6 атм.), при необходимости, отрегулировать реле.
- 7. Слить конденсат из ресивера, открыв кран слива конденсата на несколько секунд.
- 8. Убедиться в работоспособности предохранительного клапана, приведя его на несколько секунд в действие вручную.
- 9. Открыть выходной кран пневмоавтомата.
- 10. Закрыть панели пневмоавтомата.
- 11. При температуре воздуха ниже +5°C, выждать от 15 до 45 минут (в зависимости от температуры воздуха), для прогрева внутреннего объема стойки встроенным тепловентилятором. Это необходимо для минимизации погрешности показаний манометра из за температурного дрейфа.
- 12. Подключить шинную насадку к тестовой шине.
- 13. Установить минимально допустимое давление вращением ручки "УСТАНОВКА" (0.5 атм. по умолчанию) и нажать кнопку "ОК". Дождаться окончания регулировки.
- 14. Проверить работоспособность кнопки "ОТМЕНА".
- 15. Проверить правильность работы пневмоавтомата. Для этого последовательно задать давление 1,0 1,5 2,0 2,5 3,0 атм. Проконтролировать совпадение между заданным давлением на цифровом индикаторе и показаниями манометра. При значительном отклонении заданного и реального давления, произвести калибровку датчика давления пневмоавтомата (см. далее).

8.2. Согласование манометра и датчика давления (калибровка датчика)

- 1. Подключить шинную насадку к тестовой шине. Шина будет использоваться в качестве опорного источника давления. В процессе регулировки необходимо сначала снизить давление в шине до 0.5 атм., затем накачать до 3.0 атм. (можно использовать при калибровке и другие значения давления, но 0.5 и 3.0 рекомендуемые). Тестовая шина должна обеспечивать такой диапазон давлений. Практически подойдет неизношенная шина легкового автомобиля.
- 2. Войти в сервисное меню (нажав сервисную кнопку или набрав код доступа), из меню верхнего уровня перейти к пункту $5E \rightarrow 5C$ (калибровка активного датчика давления).
- 3. Начать процедуру калибровки, перейдя к пункту **Р**. Пока активен данный пункт меню, можно напрямую управлять клапанами накачки и сброса вращая ручку "УСТАНОВКА". Поворот против часовой стрелки сброс; по часовой накачка. При включенном клапане, поворот в сторону, противоположную включению, отключает клапан.
- 4. Вращая ручку "УСТАНОВКА" и напрямую управляя клапанами накачки и сброса, установить давление в шине равным 0.5 атм. (как можно более точно).
- 5. Нажать кнопку "ОК", при этом цифровой индикатор перейдет в состояние установки первого опорного давления, которое нужно записать (вращая ручку "УСТАНОВКА"). Оно должно соответствовать текущему давлению в шине по показаниям манометра. В данном случае, если правильно выполнен предыдущий пункт, это 0.5 атм.
- 6. Еще раз нажать кнопку "ОК" и перейти к пункту $\ref{eq:harmonth}$.
- 7. Вращая ручку "УСТАНОВКА" и напрямую управляя клапанами накачки и сброса накачать шину до давления в 3.0 атм (как можно более точно).
- 8. Нажать кнопку "ОК", при этом цифровой индикатор перейдет в состояние установки второго опорного давления, которое нужно записать (вращая ручку "УСТАНОВКА"). Оно должно соответствовать текущему давлению в шине по показаниям манометра. В данном случае, если правильно выполнен предыдущий пункт, это 3.0 атм.
- 9. Нажать кнопку "ОК", при этом отобразиться пункт

 С. Повторное нажатие кнопки "ОК", при этом, применит новые настройки для датчика давления. Для отмены изменений, необходимо повернуть ручку "УСТАНОВКА" по часовой стрелке до отображения пункта

 и нажать кнопку "ОК". После этого будет осуществлен возврат к меню верхнего уровня.
- 10. Для сохранения новых параметров датчика из меню верхнего уровня перейдите к пункту 5₺ → 55 и нажмите кнопку "ОК". После чего вернитесь к меню верхнего уровня (выбрав пункт ►₺) и переведите пневмоавтомат в рабочий режим выбрав пункт меню 5₧.
- Согласование манометра и датчика давления производится при первом включении пневмоавтомата и при каждой замене манометра.

8.3. Порядок работы

- 1. Подключить шинную насадку к шине.
- 2. Поворотом ручки "УСТАНОВКА" задать требуемое давление на цифровом индикаторе.
- 3. Нажать кнопку "ОК" и дождаться окончания процесса регулировки.
- 4. Визуально, по манометру, удостоверится в правильности регулировки, при необходимости повторить.
- 5. Отсоединить шинную насадку.

9. Характерные неисправности и методы их устранения

Неисправность	Причина неисправности	Способ устранения	
Не включается пневмоавтомат.	Нет электропитания.	Проверить состояние линии электропитания и состояние защитных автоматов внутри пневмоавтомата.	
	Поврежден блок питания.	Заменить блок питания.	
При попытке накачать шину процесс сразу останавливается, шина не накачивается. При этом сброс давления работает.	Нет пневмопитания.	Проверить линию пневмопитания, положение входного крана внутри пневмоавтомата и настройку регулятора давления блока подготовки воздуха.	
	Выключен компрессор	Проверить индикацию на реле времени на монтажной плите пневмоавтомата; Проверить положение кнопки пуска на реде давления компрессора;	
		Перезапустить компрессор включением автоматического выключателя QF1 (16 A)	
После накачки нескольких шин при попытке накачать новую процесс останавливается. При этом сброс давления работает.	Нет пневмопитания, превышено допустимое время работы силового агрегата.	Проверить линию пневмопитания и компрессор. Сбросить электропитание компрессора - выключатель на реле давления. Слить конденсат из ресивера.	
При попытке накачать шину, манометр сразу показывает максимальное давление, при этом шина не накачивается. При этом при подключении шины, показания манометра или изменяются медленно, или не изменяются совсем.	Неисправен или сильно загрязнен ниппель шины.	Заменить или очистить ниппель.	
	Повреждена или сильно загрязнена шинная насадка.	Заменить шинную насадку.	
	При низкой температуре замерз конденсат в рукаве. При этом манометр будет показывать максимальное давление даже при отключенном от шины рукаве.	Заменить рукав на зимний. Если установлен зимний рукав, проверить целостность греющего кабеля и при его обрыве заменить рукав в сборе.	
Не сбрасывается давление в шине.	Те же что и выше.		
	Повреждена линия сброса давления.	Проверить и восстановить линию сброса.	
При подключении выходного рукава к шине, сразу начинает стравливаться давление по линии сброса.	Засорение или поломка клапана сброса.	Заменить или очистить клапан. Проверить состояние выходного фильтра, при необходимости заменить или очистить его.	
Падение скорости накачки и сброса давления.	Засорение выходного фильтра.	Заменить или очистить выходной фильтр.	
	Снижение давления во входной	Проверить входную магистраль и	

Неисправность	Причина неисправности	Способ устранения	
	магистрали.	компрессор.	
Отклонение давления от заданного после регулировки больше, чем погрешность манометра.	Поврежден манометр.	Заменить манометр.	
	Нарушена калибровка датчика давления.	Провести калибровку датчика давления.	
	Поврежден датчик давления.	Заменить датчик давления.	
	•		
Не работает обогрев зимнего рукава	Обрыв греющего кабеля.	Измерить сопротивление греющего кабеля, при обрыве заменить рукав в сборе.	
	Выход из строя блока питания греющего кабеля.	Проверить блок питания.	
	Выход из строя датчика наружной температуры.	Проверить показания датчика. При отклонении показаний, заменить датчик.	
	Неправильная настройка температуры включения/отключения внешнего обогрева.	Проверить соответствующие настройки блока управления.	
Не включается внутренний обогрев пневмоавтомата	Выход из строя датчика внутренней температуры.	Проверить показания датчика. При отклонении показаний, заменить датчик.	
	Неправильная настройка температуры	Проверить соответствующие настройки блока управления.	

включения/отключения внутреннего обогрева.

В зимний период замерзла вода в

магистральном трубопроводе

Закрыты краны

Не идет вода

Проверить положение кранов на станции и в пневмоавтомате

Проверить состояние системы

обогрева трубопровода

10. Техническое обслуживание

10.1. Один раз в сутки

- 1. Слить конденсат из ресивера.
- 2. Проверить состояние пневморукава и шинной насадки, при необходимости заменить.
- 3. Проверить намотку пневморукава на кронштейне, при необходимости перемотать рукав.
- 4. Проверить работоспособность предохранительного клапана компрессорной установки.

10.2. Один раз в квартал

- 1. Проверить уровень масла в силовом агрегате компрессорной установки, при необходимости долить масло.
- 2. Проверить состояние кнопок управления, ламп индикации, очистить внешние поверхности пневмоавтомата и органы управления от загрязнений.
- 3. Проверить целостность конструкций, отрегулировать температурный режим пневмоавтомата.
- 4. Проверить состояние пневмокоммуникаций, при необходимости очистить фильтр обратного потока.
- 5. Проверить состояние электрокоммутирующей арматуры, подтянуть крепеж контактных групп.
- 6. Проверить наличие течей атмосферных осадков, устранить течи.
- 7. Проверить состояния гальванических и лакокрасочных покрытий внутренних элементов.
- 8. Проверить работу компрессора: контролировать уровень шумности и вибраций.
- 9. Проверить срабатывание защиты компрессора по времени непрерывной работы.
- 10. Проверить функционирование: контролировать скорость накачки и стравливания воздуха на образцовой шине, контролировать показания манометра.

10.3. Перед началом зимнего периода

- 1. Закрыть кран подачи воды на станции (рисунок 19).
- 2. Открыть кран слива воды из трубопровода на станции (рисунок 19).
- 3. Открыть кран продувки магистрали воды (рисунок 7) и осуществить осушение трубопровода.
- 4. По завершению продувки закрыть все краны.

10.4. Два раза в год

- 1. Проверить состояние масла в картере, при необходимости заменить.
- 2. Проверить состояние всасывающего фильтра компрессора. При необходимости заменить.
- 3. Проверить крепление силового агрегата, подтянуть крепеж.
- 4. Проверить состояние ребер охлаждения электромотора, очистить ребра охлаждения.
- 5. Отрегулировать диапазон рабочего давления реле давления.

10.5. Один раз в два года

- 1. Заменить или поверить манометр.
- 2. Провести калибровку датчика давления.

Эксплуатация пневмоавтомата при температурах ниже 0°C с выключенным или неработающим устройством термостабилизации запрещена. При длительном отключении электропитания пневмоавтомат должен быть демонтирован и помещен для хранения в отапливаемое помещение.

Для заметок

ООО "Квадропром"

192102, Санкт-Петербург г, Самойловой ул., дом №7, литера В, помещение 11H, комната 2

in fo@forteco.pro

www.forteco.pro

